

September 21-24 Minneapolis, MN

GETTING THE MOST OUT OF HYDRONIC HEATING SYSTEMS

Copyright © 2011. R. Trethewey, All rights reserved. No part of this document or file may be used without permission of the author. All diagrams are conceptual only. By: Ross Trethewey, MSME TE2 Engineering, LLC.

Topics

- 10,000 Foot View
- Why Hydronics?
- Systems Approach
 - Heating Source
 - Distribution System
 - Heating Emitter

10,000 Foot View

- □ Why Are We Here?
 - Variability in Fuel Costs
 - Energy Independence
 - Savings \$\$

- Reduce EmissionsComfort
- The Future

Why Hydronics?

- Comfortable
- Quiet
- No drafts
- Efficient
- Ease of zoning
- Physical characteristics

Heat Capacity ($Btu/ft^3/^{\circ}F$) at Room Temp Water = 62.4 Air = 0.018

Water can hold 3500 times as much heat as air!

Hydronics Tie It All Together

ALTERNATE HEAT SOURCE INTERACTIONS

Hydronic Heating Concept

Radiant Zones

2 ع

Heating Source

- Available Sources:
 - Boiler
 - Solar Thermal
 - Geothermal
 - Waste Heat
 - And others...

Heating Source

		HOURS OF	TEMPE	RATURE	OCCURA	NCE				
	TEMPERATURE RANGE									
Location	Unit 72 or More		72 – 57	57 - 37	37 - 22	22 - 7	7 or les			
Boston	Hours	848	3080	3199	1359	260	14			
	%	9	35	37	16	3	0.2			
Burlington	Hours	601	2640	2611	1804	824	280			
	%	9	30	30	21	9	3.2			
Hartford	Hours	912	2875	2714	1747	463	49			
	%	10	33	31	20	5	0.6			
Portland	Hours	540	2622	3069	1827	592	110			
	1 %	6	30	35	21	7	1.3			
	Hours	724	2804	2899	1684	535	113			
Average	%	8	32	33	19	6	1.3			
						Heating = 8	035 hours			
		Table 1				Cooling = 7	25 hours			

72% of year in Boston is between 37-72° F Design Day

Boiler Modulation (Turn-Down)

□ 90%+ of the heating season the boiler is at part-load

Condensing Boilers Only Condense When...

EFFICIENCY RATINGS - A MOVING TARGET

AFUE Testing

- Not Considered:
 - Short cycling
 - Jacket & standby losses
 - Part-load operation
 - Outdoor reset
 - Setback Schedule

Outdoor Reset Curve

Outdoor Reset Curve

The Goal:

- Lower Supply Water Temp
- ~For every 3 degrees, you gain 1% savings

How5

- Efficient Building Design/Construction
- Better Heat Emitters (High Surface Area)

HX Material

High corrosion rate environment

- Electrochemical Corrosion=
 Oxygen+Water+Metal
- Galvanic Corrosion= Two Dissimilar Metals
 + Water
- Pit Corrosion= Localized breakdown by acids, oxygen, etc.
- High Temp Corrosion= High temps in an oxidizing environment

Source: http://www.corrosionsource.com/handbook/galv_series.htm

Boiler Design Summary

- ModCon Boilers
- Pick the Right Size- Manual J
- High Modulation Range- Reduce Short Cycling
- AFUE isn't everything!
- HX Material- High grade metal
- High Surface Area HX- Scrub all the heat out
- Controls- Outdoor Reset

Sweating is Good!

Distribution System

Piping

- Copper, Steel, PEX, PEX-AL-PEX
- Circulating Pumps
 - "It's just a pump" mentality
 - In general these are not that efficient

Distribution Efficiency

Distribution Efficiency =

Rate of Heat Delivered (Btu/hr)

Distribution Equipment Energy Use (W)

Hydronic:
 100,000 Btu/hr design
 4x Circulators (85 W each)

100,000 Btu/hr 340 W = 295 (Btu/hr)/W

Air (Furnace):

 100,000 Btu/hr design
 1300 W Blower

 1300 W Blower

Hydronic system moves the same amount of heat with almost 4 times less electricity!

Slowing the Flow

How ECM Circs Work

Standard Circulators = One Speed, throttle with brake
 ECM Circulators = Variable Speed (not a VFD)

Wire to Water Efficiency of double! = 50-90% energy savings

Re-Think Piping

4 Single Speed Circulators vs. 1 ECM Circulator

OR

Low Loss Header with ECM Circ and Zone Valves

Pump Curves

ECM Circulator with Modulation

- In Pressure Constant Mode
- Impeller slows down or speeds up to maintain constant pressure in the system
- This means \$\$\$ savings!

Case Study- Residential Pumping

Example in ECM Pumping

Pumping Analysis

- □ Old version
 - □ 11 x Single Speed PSC Circs (\sim 85 W) = 935 W
 - Plus all the controls and relays to run each pump...
- New version
 - □ 1 x ECM Circulator (15-320 W) = 320 W
 - □ 7x Zone Valves (~15 W) = 105 W \longrightarrow 320+105 = 425 W
 - No External Communication or Wiring!
- On Design Day @ \$0.16/kW-hr:
 - \$3.59 vs. \$1.63 (55% savings)

Case Study- Fort Stewart

Barracks 1511 - 3HP Constant Speed End Suction Pump

Case Study Analysis

Building	Pump	Delta-T	kWh		
		(Target 10°-12°)	During Test Period		
1511	Existing	4°	1144		
1506	Wilo Stratos	10°	135		
Energy Saving	88.2%				

Distribution System

- Distribution Efficiency
- Minimize the number of pumps
- Stop over pumping
 - Slower flow rates = Higher Delta T's
 - Condensing boilers enjoy 35°F Delta's T's

- ECM Circulators = Wire to Water Efficiency + Variable Flow
- Good hydraulic design
 - Low-Loss Headers, Correct Pipe Size, Mixing Valves, Etc.

Hydronic Heat Emitters

- Heat where you need it!
 Minimal Temp Variation
- Comfortable
- Flexible
- Variation of types...

Forced-air heating

Radiant floor heating

Radiant in Slab

- High thermal mass
- □ Supply water ~100°F
- Slower response

Radiant Above Subfloor

No Plates

Low Grade Materials

Aluminum Plates

Lower Water Temperature Better Heat Transfer Faster Response

Radiant Beneath Subfloor

- Retrofit applications
- Minimize floor layers
 - Reduce R-value through floor
- Always insulate joist bays!
- □ Supply water temp ~ 140°F

Panel Radiators

Low Water Temperature

Very slow

- High Surface Area
- Low Water Content
- Fast responding

Fast

Slow

Slow

Panel Radiators

Zoning Without Thermostats

Source: John Siegenthaler

Heating Element in Centre of Trench

Fin-Tube Radiation

		Fins	No.of		Steam 1 PSI*	HOT WATER RATINGS* BTU/HR./FT. (Flow Rate 3 Ft./Sec.)											
Tube Size and Material	Fin Size and Material	per Foot	Tiers 7" cl	Pressure Drop †	Btu/Hr. Per Foot	110°F	120°F	130°F	140°F	150°F	160°F	170°F	180°F	190°F	200°F	210°F	220°F
1¼"IPS steel	4¼" x 4¼" x .024" electro-gal. steel	32	1	420	1340 2410	268 482	348 627	442 795	536 964	603 1085	710 1277	817 1470	925 1663	1045 1880	1152 2073	1273 2290	1407 2531
	Ĵ		3		3170	634	824	1046	1268	1427	1680	1934	2187	2473	2726	3012	3329

- Room Heat Load= 6300 Btuh (design day)
 - Option 1: 7 Feet of 1 Tier with 180°F
 - Option 2: 14 Feet of 1 Tier with 130°F
 - Option 3: 6 Feet of 3 Tier with 130°F

Boiler condenses with Options 2 and 3!

*Based on 65°F Entering Air Temperature

Hydro-Air

- High Surface Area Coil
- Low Water Temperature
- ECM Blower Air Handler
- Cooling and Heating

Variable Speed ECM Motor

Fan Coil Sizing

Hot Water Coil

In many cases you can upsize the hot water coil to drop your water temps down...

64,000 BTU/HR:

SMALL HW COIL Supply water=160 °F Return water= 128 °F LARGER HW COIL Supply water=140 °F Return Water =118°F

	NOM. CFM	GPM (HTG)	P.D. (FT.	BTUH (1000) AT ENTERING WATER TEMPERATURE							
			WATER)	140°F	160 [°] F	180°F					
A	1200	6 4 2	7.55 3.64 1.04	53.8 50.2 42.6	69.2 64.6 54.7	84.6 78.9 66.9					
A	1200	8 6 4	4.83 2.90 1.40	66.6 63.6 59.0	85.7 81.8 75.8	104.7 100.0 92.7					

Boiler operates at 95% vs. 90%

*Based on 65°F Entering Air Temperature

Heat Emitter Summary

High Surface Area!

Upsize radiator size or hot water coil

- Low Water Temperature
- Various Types
 - Radiant In-Slab
 - Above/Below Subfloor
 - Panel Radiators
 - Fin-Tube Radiators
 - Hydro-Air

Source: John Siegenthaler

Any Questions?

Contact: ross@te2engineering.com

