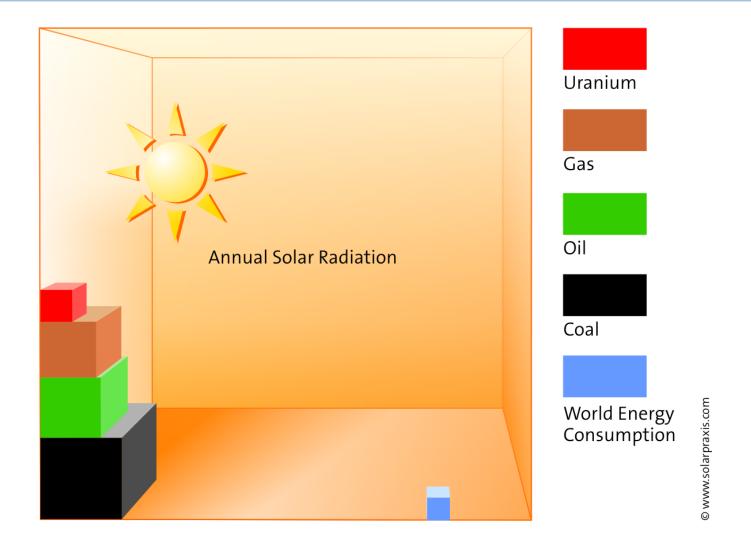

INTRODUCTION: SOLAR THERMAL TECHNOLOGY

Copyright © 2012. R. Trethewey, All rights reserved. No part of this document or file may be used without permission of the author. All diagrams are conceptual only.


By: Ross Trethewey, MSME TE2 Engineering, LLC.

What is Solar Thermal?

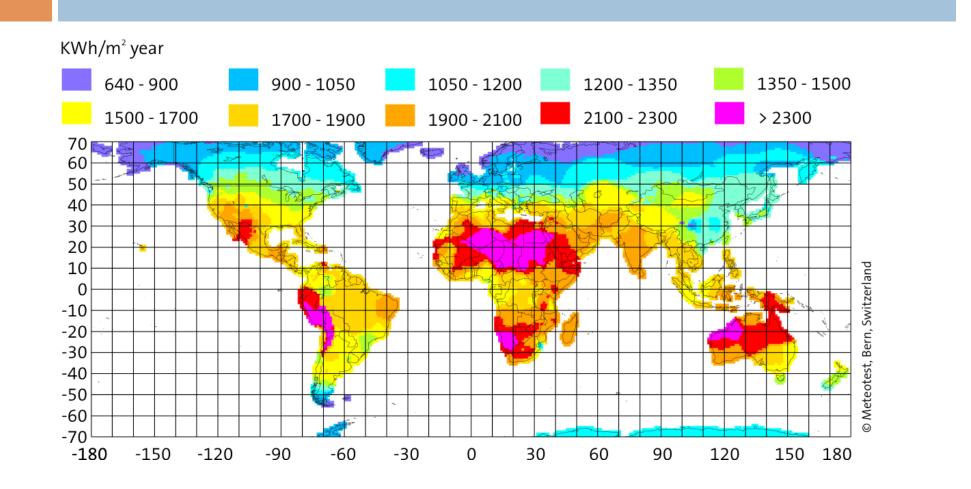
- Harness and convert solar energy into useful thermal energy.
- Applications
 - Domestic hot water
 - Space heating
 - Pool heating
 - Process heating
 - Car Washing
 - Cooling

Why Solar - World Picture

Why Solar Thermal?

- **Energy independence**
- Fluctuating energy prices
- Reduce carbon footprint

Area:


- Increase home/ building value
- Low upfront investment / Fast ROI
- 3-6 Times More Efficient than Solar Photovoltaic (PV)

Output/day: 22.7 kWh 80 ft² Area: Installed Cost: \$9,000

Output/day: 22.3 kWh (76,100 Btu) 456 ft2 (18 panels) Installed Cost: \$30,000

But We Don't Get Enough Sunlight...

Boston Insolation $\sim 500,000$ Btu/ft² annually

Three Components

Collectors

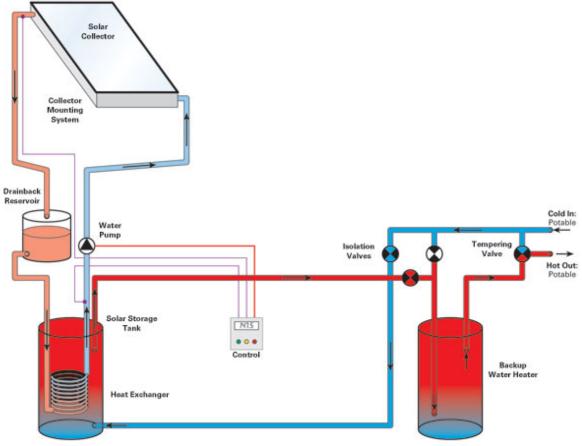
- Flat Plate
- Evacuated Tube

Pump Station/HX

- External HX
- Pump-only
- Controller included

Storage Tank

- Storage tank
- Indirect tank
- Dual Coil tank

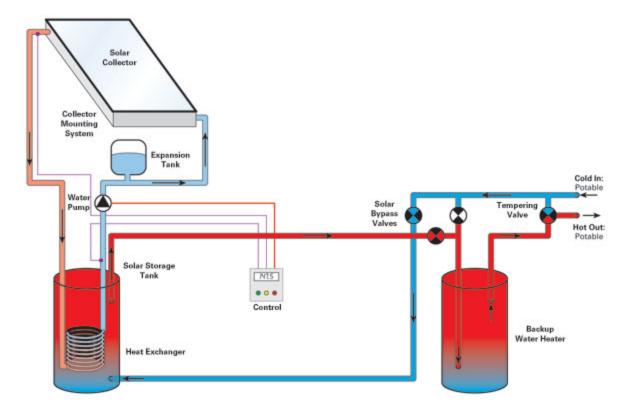

Drain Back Systems

□ Advantages:

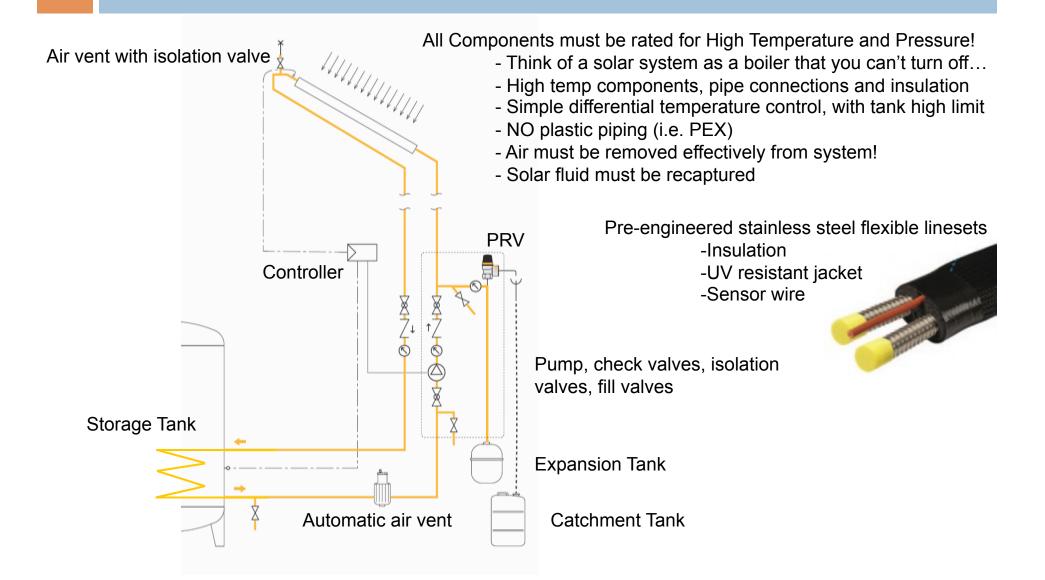
- Can use Water
- No Expansion Tank, Air Vent, Check Valve
- Safe from power outages/ overheat

Disadvantages

- Careful installation- Everythinç must slope
- High head pump(s)
- Can be noisy
- Mechanical/Electrical issue could be catastrophic

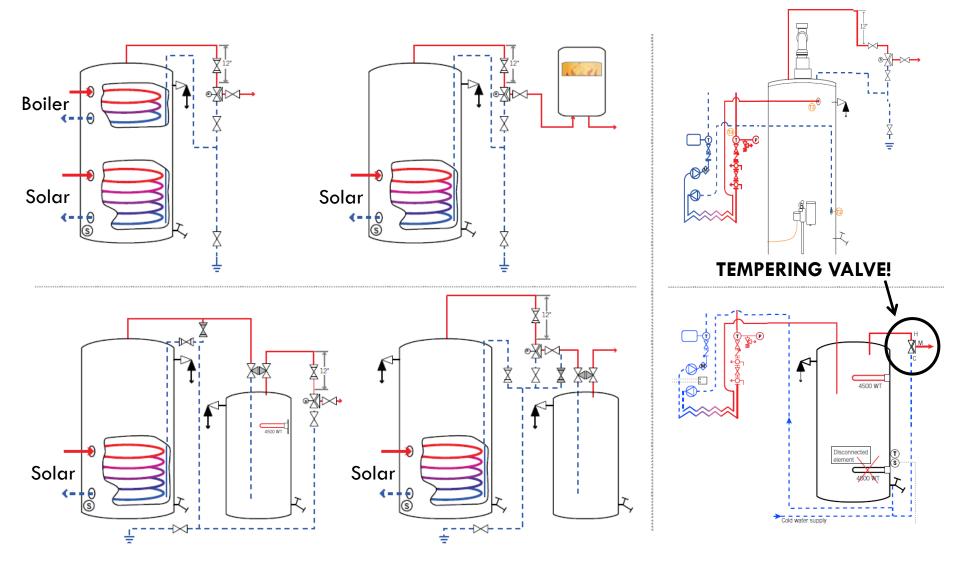

Pressurized Systems

Advantages:


- Freeze protected
- Components do not need to be sloped
- Low Wattage Pump

Disadvantages:

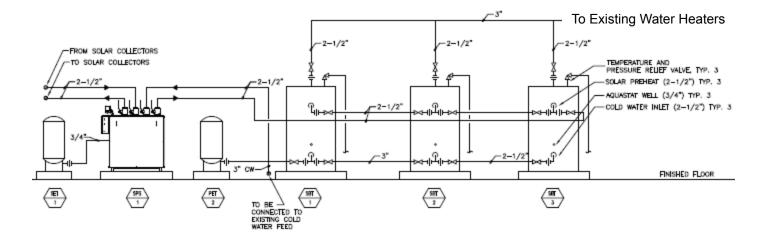
- Check glycol annually
- Overheat during power outage or low load
 - Heat dissipation?



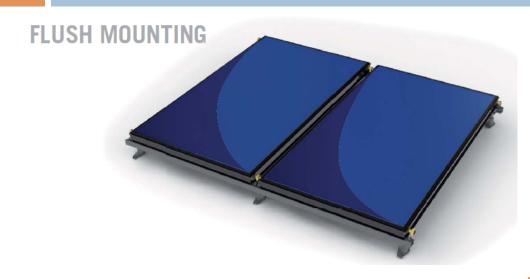
Piping Components

SHW Layout

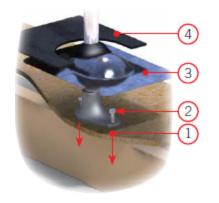
INTERNAL HEAT EXCHANGER



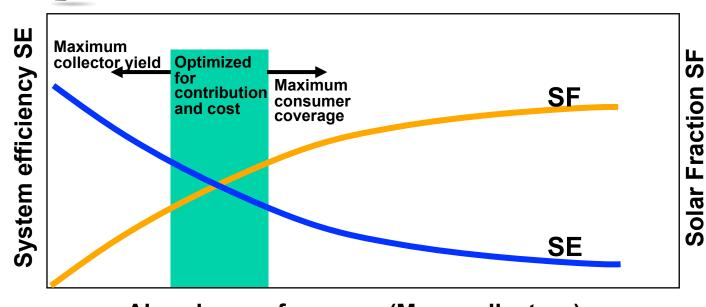
EXTERNAL HEAT EXCHANGER


SHW Layout- Commercial

- External heat exchangers
 - Forced convection can provide up to 25% more heat exchange
 - Local codes may require Double-Wall HX
- Variable speed (ECM) pumps
 - Lower pump energy consumption
 - Reduce system short-cycling
- Plug and Play Appliances



Collector Racking



- Structural analysis to verify roof structure can withstand loads (weight, snow, uplift)
- Structural steel or ballasting may be required
- All Roof penetrations watertight!

System Design for SHW

- Energy loads will dictate number of collectors...
 - Based on daily consumption (gal/day at certain temperature)
 - Also good to know the load profile (summer usage?)
- Match demand/collector array size to storage capacity...

Storage Capacity =1-1.5 gal/ ft^2 of absorber area

Absorber surface area (More collectors)

Collector Performance

SRCC OG-100 Rating

- Collector Rating only
- Snapshot view of collector performance (Plot Efficiency)
- Collectors must have OG-100 to receive tax credits

SRCC OG-300 Rating

- Residential System Rating
- www.solar-rating.org

CERTIFIED SOLAR COLLECTOR SOLAR COLLECTOR CERTIFICATION AND RATING SUPPLIER: Heliodyne, Inc. 4910 Seaport Avenue Richmond, CA 94804 USA SRCC MODEL: GOBI 408 001 COLLECTOR TYPE: Glazed Flat-Plate CERTIFICATION#: 2010115D SRCC OG-100 COLLECTOR THERMAL PERFORMANCE RATING Kilowatt-hours Per Panel Per Day Thousands of BTU Per Panel Per Day CATEGORY CLEAR MILDLY CLOUDY CATEGORY CLEAR MILDLY (Ti-Ta) DAY CLOUDY DAY (Ti-Ta) DAY CLOUDY 13.5 6.9 46.2 (-5 °C) 10.2 (-9 °F) 34.9 (5 °C) 12.3 9.0 5.7 (9 °F) 42.0 30.8

19.5 (20 °C) 10.5 7.3 4.1 (36 °F) 35.8 24.8 13.8 (50 °C) 7.2 4.2 1.3 (90 °F) 24.5 14.2 4.6 4.3 (80 °C) 1.6 0.0 (144 °F) 14.6 5.6 0.0

CLOUDY

DAY

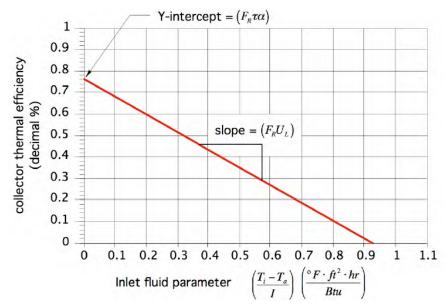
23.7

A- Pool Heating (Warm Climate) B- Pool Heating (Cool Climate) C- Water Heating (Warm Climate) D- Water Heating (Cool Climate) E- Air Conditioning

Original Certification Date: 28-MAR-11

COLLECTOR SPECIFICATIONS

000000000000000000000000000000000000000		·				
Gross Area:	2.993 m ²	32.22 ft ²	Net Ape	Net Aperture Area: 2.78 m ² 29.93 ft ²		
Dry Weight:	46.3 kg	102. lb	Fluid Ca	Fluid Capacity: 2.6 liter 0.7 gal		
Test Pressure:	1103. KPa	160. psig				
COLLECTOR MATE	RIALS			Press	ure Drop	
Frame:		Aluminum	F	Flow ΔP		ΔΡ
Cover (Outer):		Tempered glass	ml/s	gpm	Pa	in H ₂ O
Cover (Inner):						
Absorber Materia	al·	- Copper / - Aluminum		Insulation Side	: F	oam
Absorber Coatin	g: Selec	tive coating		Insulation Back: foam		


TECHNICAL INFORMATION

TECHNICAE	INT ORMATION				
Efficiency Equation [NOTE: Based on gross area and (P)=Ti-Ta]			Y INTERCEPT	SLOPE	
SI Units:	η= 0.749	-3.69060 (P)/I	-0.00551 (P) ² /I	0.752	-4.029 W/m ² .°C
IP Units:	η= 0.749	-0.65010 (P)/I	-0.00054 (P) ² /I	0.752	-0.710 Btu/hr.ft ² .°F
Incident Ang	le Modifier [(S)=	1/cosθ - 1, 0°<θ<=60°]	Test Fluid:	Water	
Κτα = 1	-0.078 (S)	-0.086 (S) ²	Test Flow Rate:	27.7 ml/s.m ² (2 0 4 0 0
Κτα = 1	-0.17 (S)	Linear Fit	reaction Rate.	27.7 mi/s.m l	J.0408 gpm/π

Collector Thermal Efficiency

Optical losses

- Typically 20% loss of solar transmission through glass
- Thermal losses
 - Function of ambient air temperature, inlet fluid temperature and solar radiation

T - T Where: $T_i = inle$

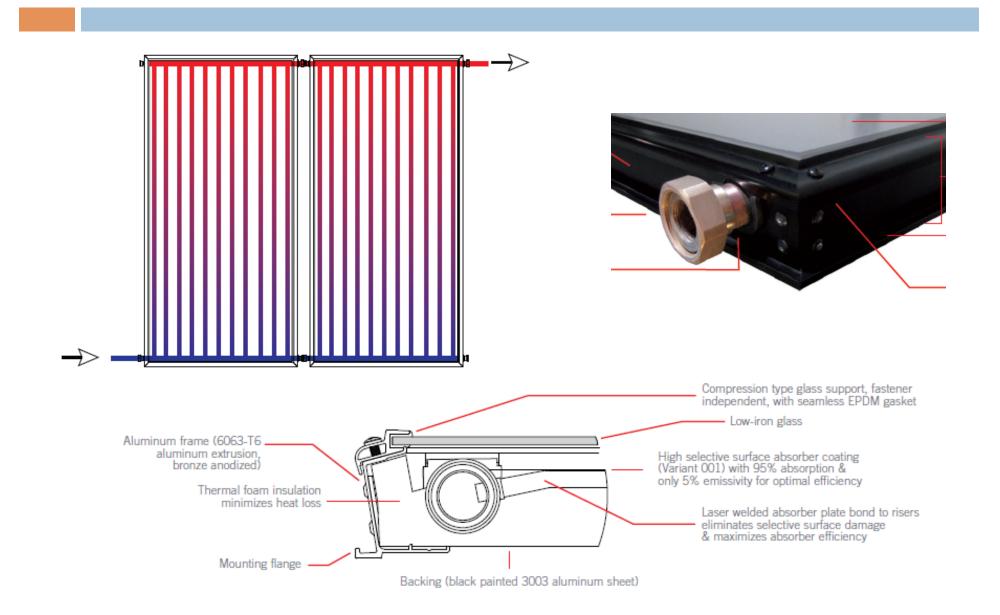
$$\eta_{collector} = (F_R \tau \alpha) - (F_R U_L) \times \left[\frac{I_i - I_d}{I} \right]$$

 $\begin{array}{l} T_i = \text{inlet fluid temperature to collector (°F)} \\ T_a = \text{ambient air temperature surrounding collector (°F)} \end{array}$

I = solar radiation intensity incident on collector (Btu/hr/sq. ft.)

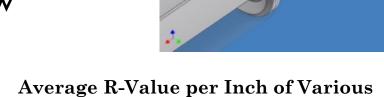
Frta = Y-intercept (determined through testing) FrUL = slope of efficiency line (determined through testing)

RST Thermal

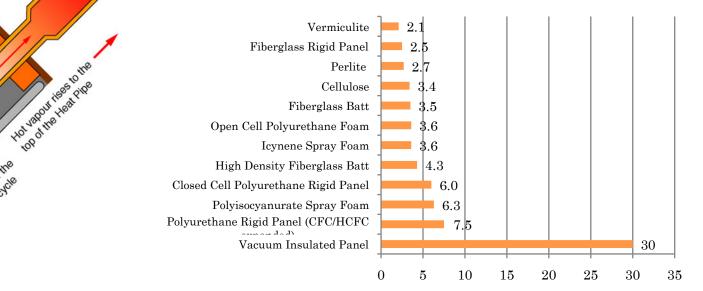

Unglazed Plastic Collectors

- Typically used for pool heating
- Advantages
 - Inexpensive
- Disadvantages
 - Low temperature rise
 - No insulation
 - No tax credits/rebates

Glazed Flat Plate


Evacuated Tube

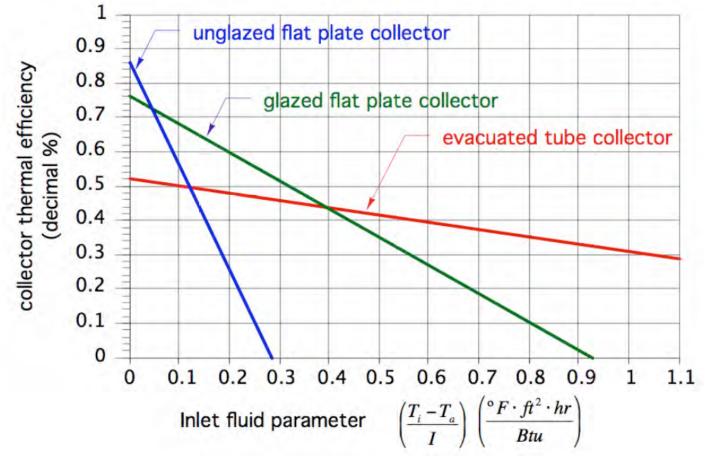
Heat Pipe and Direct Flow


Sunlight absorbed as heat

by the dark inner surface of the Evacuated-Tube

Glass Evaluation The octs in head

Materials

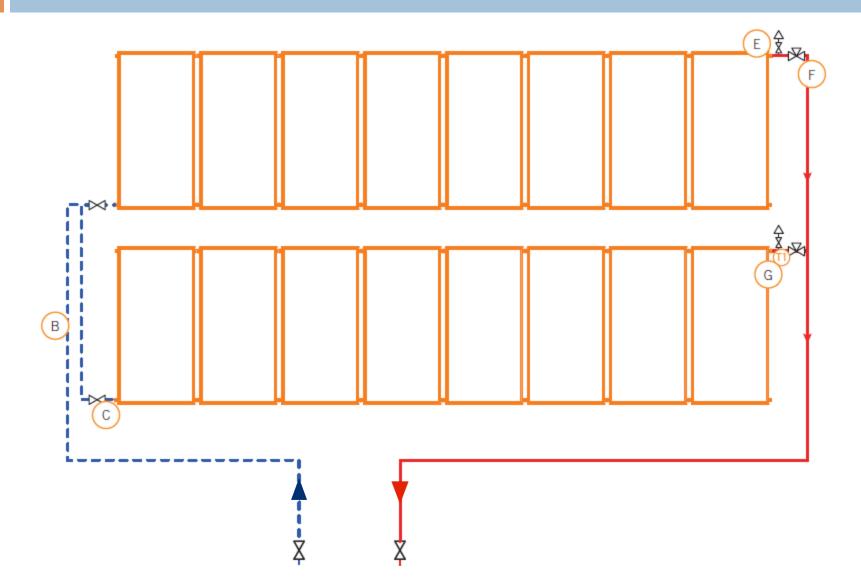


Minimum Inclination = 20° Recommended Minimum = 35° (to shed snow)

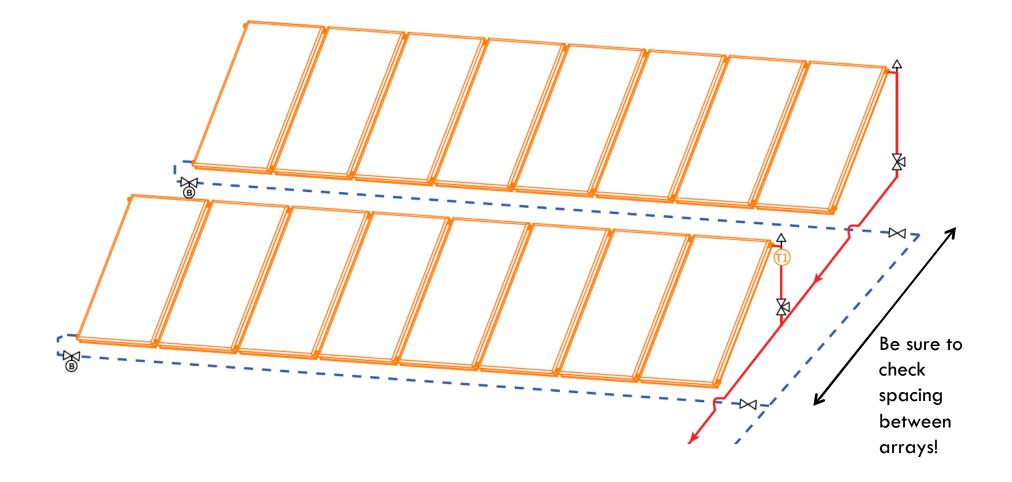
Telure on Portono the Cold valou liquites and

Heat Phe Dispert of the

Which is More Efficient?



Where do the lines intersect?


20°F Ambient, Reasonably Bright Day (250 Btuh/sq. ft), with 120°F fluid temp = Fluid Parameter 0.4

* Efficiency curves based on gross surface area of collectors. Durability, Service and Cost must also be evaluated.

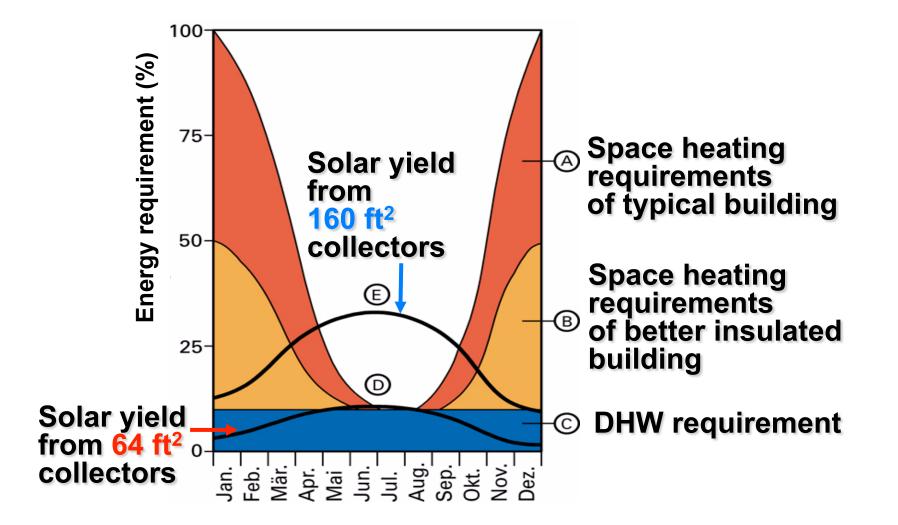
Balanced Flow: Reverse-Return Piping

Balanced Flow: Balancing Valves

Realistic Expectations for Solar

- Most people have an unrealistic expectation of what solar can actually do...
- □ So we need to educate!
 - 2 collectors on a house will heat domestic hot water for a family of 4!
 - Larger arrays can provide space heat but typically 20-40% of the total space heating load maximum.

Space Heat/Pool Heat



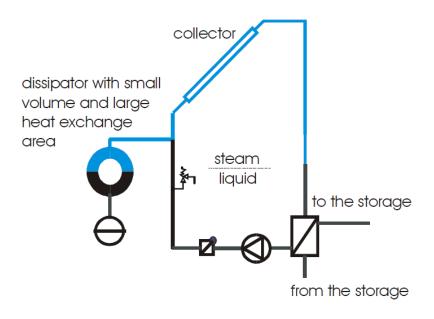
- Based on heating load, heating emitter, design water temperature, usage, demand offset?
- Matches up well with low water temperature designs (radiant floor heat, high surface area convectors, radiators, fan coils)
- If you need 180°F water temps, solar is probably not the right fit!

Pool Heating

- Based on surface area, depth, indoor/outdoor, usage, design temperature, pool environment, pool cover?
- Pool covers should be required!

Space Heating "Combi" Systems

Overheating (Stagnation)

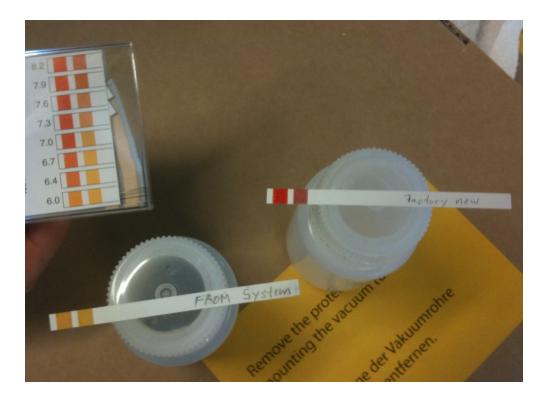

- Pressurized solar thermal systems will experience stagnation at some point.
 - Causes:
 - Oversized Collector Array
 - Tank Temperature Satisfied
 - Low Energy Consumption
 - Power Outage
 - unless PV-DC powered pumps or backup generator
 - Control/Sensor/Pump Failure
- □ How hot can it get?
 - Depends on conditions and collector type...

For flat plate:
$$\eta_{collector} = (F_R \tau \alpha) - (F_R U_L) \left[\frac{T_i - T_a}{I} \right] = 0$$

 $T_{stagnation} = \left[\frac{(F_R \tau \alpha)}{(F_R U_L)} \right] I + T_a$
 $T_{stagnation} = \left[\frac{(F_R \tau \alpha)}{(F_R U_L)} \right] I + T_a = \left[\frac{0.706}{.865} \right] 317 + 85 = 344^{\circ} F$

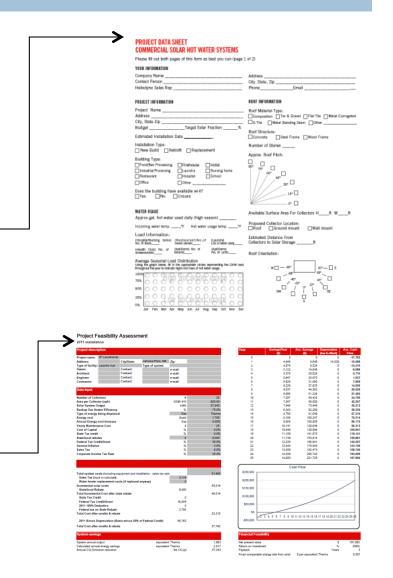
Ways to Limit Stagnation

- Higher Collector Inclination Angle
- Collector Cover
- Heat Dissipation (active and passive)
- "Vacation Mode" (only with flat plates)



Solar Glycol

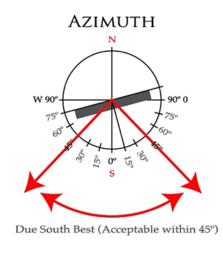
Solar Glycol Characteristics

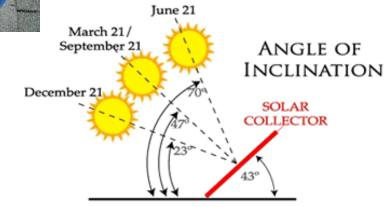

- 50% Propylene Glycol
- 50% De-Ionized H2O (by vol.)
- High Temp Corrosion Inhibitors
- □ Wide range of temp (-31- 338 F)
- □ pH of 7.5 8.5 (typical)

 Annually check glycol with refractometer or pH strip. Always flush system before filling with glycol! Recommended to use glycol cleaner solution or water with tri-sodium phosphate.

Design/Sales Process

- Identify quality applications
- Site Visit
 - Solar access
 - Roof space/condition
 - Solar checklist
- Design the solar system
 - For residential Use tables
 - For commercial Solar Simulation Report
- Integrate solar with backup systems
- Financial Feasibility
- Install the system!




Project Siting

Roof, Wall or Ground Mount

- Condition and type
- Structure
- Azimuth angle
 - Solar South
 - Shading ——
- Inclination angle
 - Annual ~ Latitude 5°
 - Winter ~ Latitude + 15°

Financial Info

Federal Tax Credit

- 30% of installed cost (no cap)
- State Tax Credit (MA)
 - Residential-15% (\$1,000)
- □ State Rebate (MA-CEC)

Data Input		
Number of Collectors	#	25
Area per Collector (sqft)	GOBI 410	800.00
Solar System Output	kWh	57,542
Backup Gas Heater Efficiency	%	75.0%
Type of energy being displaced	Gas	Therms
Energy cost	\$/unit	1.700
Annual Energy cost Increase	Gas	5.00%
Yearly Maintenance Cost	5	25
Cost of Capital	%	0.0%
State Tax credit	%	0.0%
State/local rebates	5	9,000
Federal Tax Credit/Grant	%	30.0%
General Inflation	%	2.0%
Sales Tax	%	6.0%
Corporate Income Tax Rate	%	30.0%

Total system costs (including equipment and installation - sales tax op	tii	51,900
Sales Tax (input or calculate)	3,114	
Water heater replacement costs (if replaced anyway)	0	
Incremental solar costs		55,014
State/local Rebate	9,000	
Total Incremental Cost after state rebate		46,014
State Tax Credit	0	
Federal Tax Credit/Grant	16,504	
2011 100% Deduction	0	
Federal tax on State Rebate	2,700	
Total Cost after credits & rebate		32,210
2011 Bonus Depreciation (Basis minus 50% of Federal Credit)	46,762	
Total Cost after credits & rebate		37,762

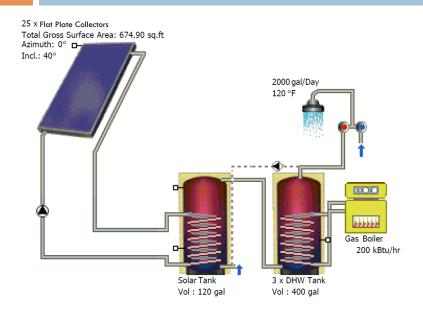
- Residential Rebate- \$25*SRCC Category C rating (cap \$3,500)
- Commercial Rebate- Based on Energy Offset (cap \$10,000)
- Utility Rebates
 - Other incentives are available....just go to <u>www.DSIREUSA.org</u>

*Pool Heating solar systems do not qualify for tax credits!

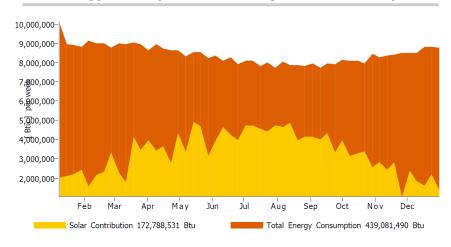
Case Study- Laundromat

Laundromat

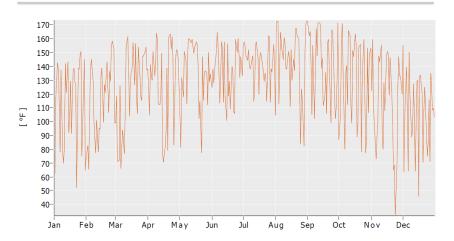
- 2000 gal/day
- Existing 3x 400 gallon tanks
- Auxiliary Gas-Fired Water Heater


Solar

- 25 Flat Plate Collectors
 - 800 Square Feet
- Solar Indirect Tank
- Solar Pump Station

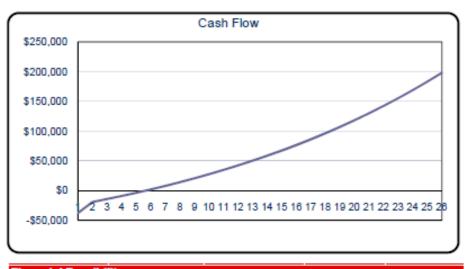


Laundromat- Solar Simulation



Results of Annual Simulation

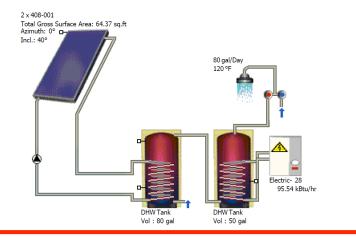
Natural Gas (H) Savings: Natural Gas (H) Savings: CO2 Emissions Avoided: DHW Solar Fraction: Fractional Energy Saving (EN 12976): System Efficiency:		7,813.9 m ³ 2,788.37 therm 36,428.34 lbs 39.4 % 39.0 % 53.6 %
DHW Heating Energy Supply: Solar Contribution to DHW: Energy from Auxiliary Heating:	423.85 MMBTU 172.15 MMBTU 265.31 MMBTU	
Installed Collector Power: Installed Gross Solar Surface Area: Collector Surface Area Irradiation (Active Surface): Energy Produced by Collectors: Energy Produced by Collector Loop:	149.75 kBtu/hr 674.9 sq.ft 321.47 MMBTU 173.04 MMBTU 171.98 MMBTU	513.39 kBtu/sq.ft 276.34 kBtu/sq.ft 274.66 kBtu/sq.ft


Daily Maximum Collector Temperature

Solar Energy Consumption as Percentage of Total Consumption

Laundromat- Financial Feasibility

Year	Savings/Year	Acc. Savings	Depreciation (tax \$ effect)	Acc. Cash Flow
0	(\$)	(\$)	(tax y enect)	-37,762
1	4,646	4,646	14,029	-19,088
2	4,878	9,524	14,029	-14,210
3			0	
4	5,122 5,378	14,646 20,024	0	-9,088 -3,710
-	-	-		-
5	5,647	25,670	0	1,937
6	5,929	31,600	0	7,866
7	6,226	37,825	0	14,092
8	6,537	44,362	0	20,629
9	6,864	51,226	0	27,493
10	7,207	58,433	0	34,700
11	7,567	66,000	0	42,267
12	7,946	73,946	0	50,213
13	8,343	82,289	0	58,556
14	8,760	91,049	0	67,316
15	9,198	100,247	0	76,514
16	9,658	109,905	0	86,172
17	10,141	120,046	0	96,313
18	10,648	130,694	0	106,961
19	11,180	141,875	0	118,141
20	11,739	153,614	0	129,881
21	12,328	165,941	ō	142,207
22	12,943	178,883	ő	155,150
23	13,590	192,473	ő	168,740
24	14,269	206,742	ő	183,009
25	14,983	221,725	ő	197,992
20	14,800	221,720	0	101,002

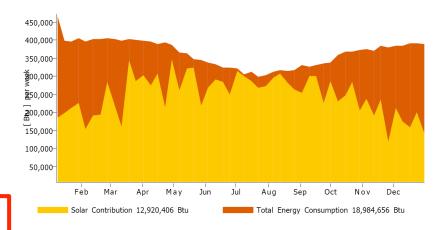


Financial Feasibility

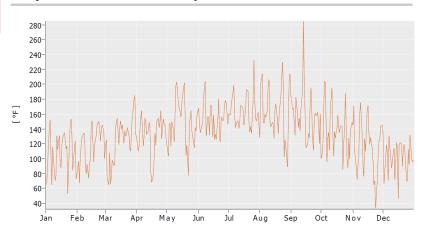
Net Present Value (NPV) = \$197, 992 Simple Payback = 5 years Annualized ROI = 19.5%

Solar Thermal Rate =
$$\frac{$37,762}{2788 \text{ therm/yr} * 25 yr}$$
 = \$0.54 per therm

Case Study- Residential



<u>Annual Savings with "Standard Equipment"</u> **Electric**: 4250 kWh (@ \$0.16/kWh) = **\$680.00 Oil**: 170 gal (@ \$3.90/gal) = **\$663.00 Natural Gas**: 190 therms (@ \$1.80/therm) = **\$345.00**

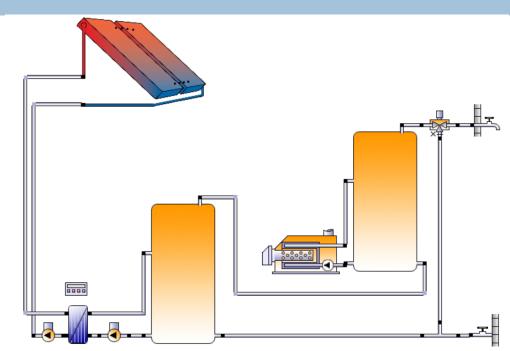

Results of Annual Simulation

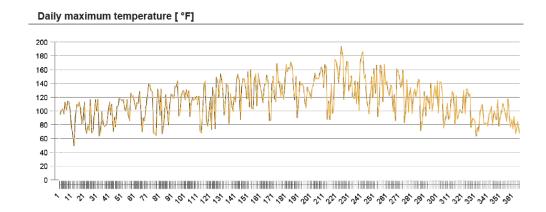
Electricity Savings: CO2 Emissions Avoided: DHW Solar Fraction: Fractional Energy Saving (EN 12976): System Efficiency:		4,256.2 kWh 6,249.29 lbs 68.1 % 68.5 % 41.9 %
DHW Heating Energy Supply: Solar Contribution to DHW: Energy from Auxiliary Heating:	17 MMBTU 12.87 MMBTU 6.04 MMBTU	
Installed Collector Power: Installed Gross Solar Surface Area: Collector Surface Area Irradiation (Active Surface): Energy Produced by Collectors: Energy Produced by Collector Loop:	14.28 kBtu/hr 64.37 sq.ft 30.72 MMBTU 15.00 MMBTU 14.03 MMBTU	513.39 kBtu/sq.ft 250.65 kBtu/sq.ft 234.49 kBtu/sq.ft

Solar Energy Consumption as Percentage of Total Consumption

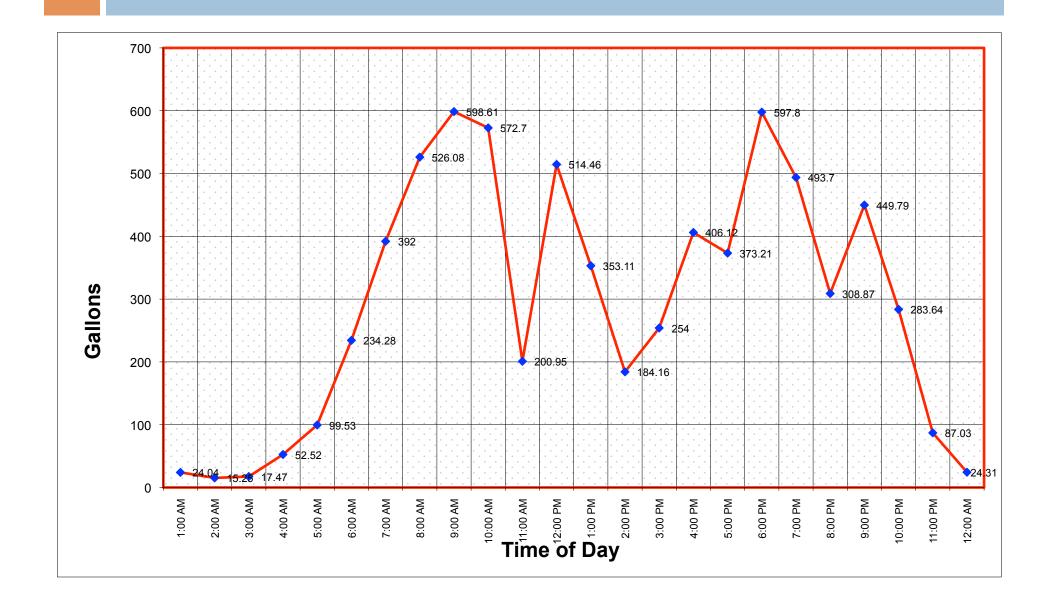
Daily Maximum Collector Temperature

Residential System - Feasibility

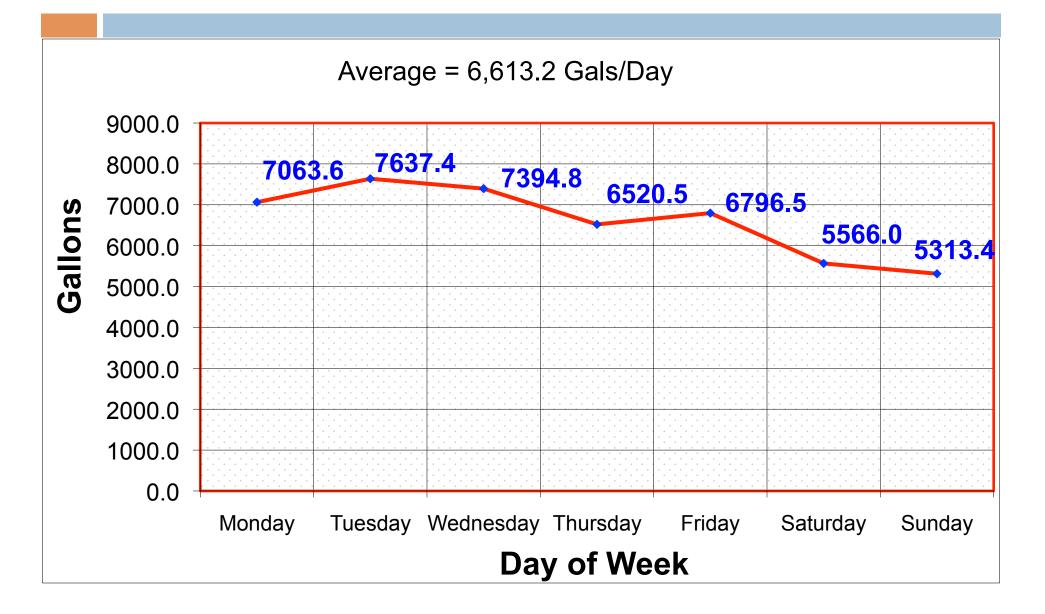

- □ System Initial Cost = \$9,000
- Deductions:
 - Federal Tax Credit (30%) = \$2,700
 - State Tax Credit (15%) = \$1,000
 - State CEC Rebate = \$1,300
 - Utility Rebates= \$0
- System Real Cost= \$4000

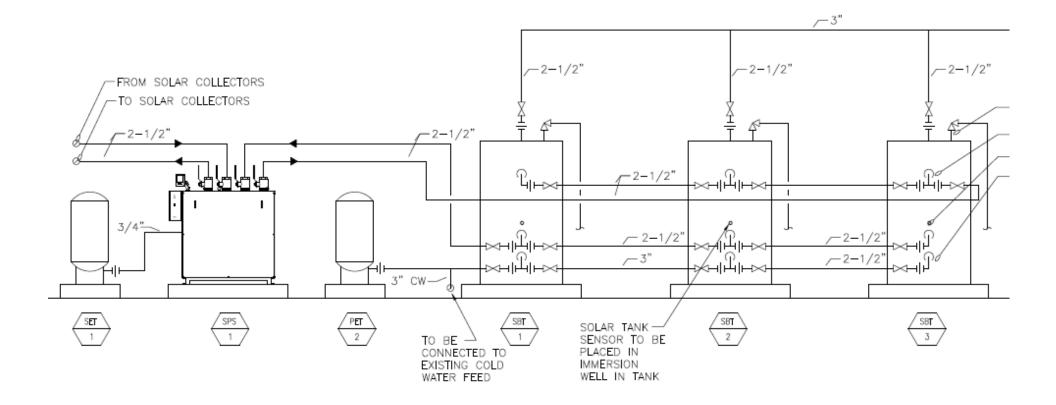


- \Box For electric, oil or propane: ~ 5 year payback
- \Box For natural gas (high efficiency): ~ 10 year payback


Case Study- NH Correctional Facility

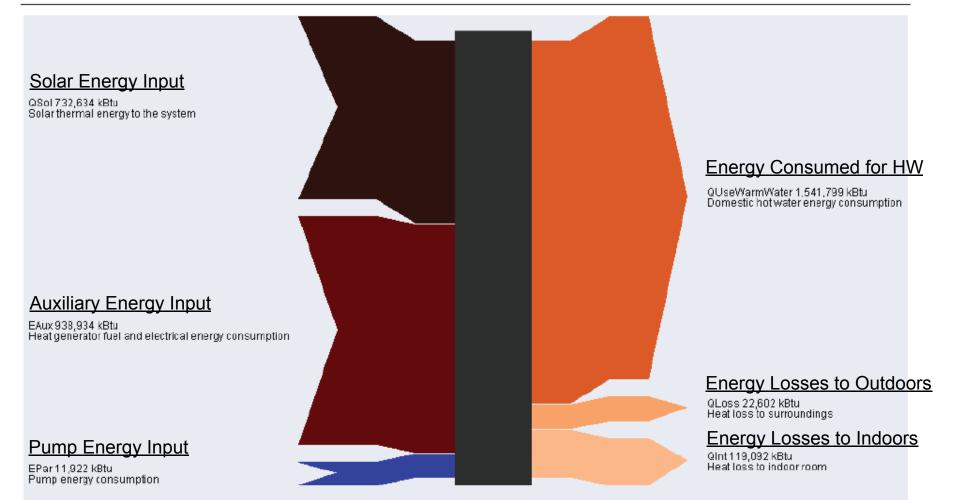
- Closed Loop Pressurized
- Ground mount
- DHW Load: 6600 gal/day
 - Kitchen, Laundry, Showers
- 64 Collectors (2560 sq. ft)
 - 45 deg inclination
 - 0 deg azimuth
- 2250 gallons of solar storage
 - 3x 750 gallon tanks
- ~50% SF

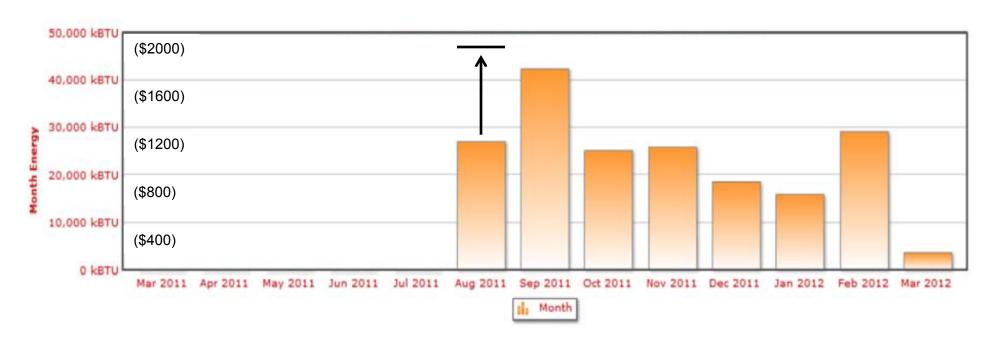



Load Profile- Typical Weekday

Weekly Use Summary

Solar System Conceptual Layout





Case Study- NH Correctional Facility

Energy flow diagram

Annual Energy Data

- System Commissioned mid August
- October was a rainy/snowy month
- February was a warmer and sunnier month

Any Questions?

Contact: ross@te2engineering.com

