

September 21-24 Minneapolis, MN

MAKING SOLAR THERMAL A PART OF YOUR BUSINESS

Copyright © 2011. R. Trethewey, All rights reserved. No part of this document or file may be used without permission of the author. All diagrams are conceptual only. By: Ross Trethewey, MSME TE2 Engineering, LLC.

What is Solar Thermal?

- Harness and convert solar energy into useful thermal energy.
- Applications
 - Domestic hot water
 - Space heating
 - Pool heating
 - Process heating
 - Absorption chillers

Why Solar - World Picture

Why Solar- U.S. Gasoline Prices

Why Solar Thermal?

- Energy independence/Fluctuating fuel prices
- Reduce carbon footprint
- Low Upfront Investment
- Fast ROI
- 3-6 Times More Efficient than Solar PV

Output/day: 22.7 kWh Area: 80 ft² Installed Cost: \$10,000
 Output/day:
 22.3 kWh (76,100 Btu)

 Area:
 456 ft2 (18 panels)

 Installed Cost:
 \$30,000

But We Don't Get Enough Sunlight...

Boston Insolation~ 500,000 Btu/ft² annually

Three Components

Collectors

- Flat Plate
- Evacuated Tube

Pump Station/HX

- External HX
- Pump-only
- Controller included

Storage Tank

- Storage tank
- Indirect tank
- Dual Coil tank

Heat-Flo

Drain Back Systems

Advantages:

- Uses Water
- No Expansion Tank, Air Vent, Check Valve
- Safe from power outages
- Disadvantages
 - Careful installation Everything must slope
 - Larger pump(s)
 - Can be noisy

http://www.youtube.com/watch?v=4X1ECpI09Jc

Pressurized Systems

Advantages:

- Freeze protected
- Components do not need to be sloped
- Low Wattage Pump
- Disadvantages:
 - Check glycol annually
 - Overheat during power outage or low load
 - Heat dissipation components or controller (may be required)

http://www.youtube.com/watch?v=D-ZpzDntsZ0&feature=related

Piping Components

SHW System Layouts

Collector Performance

SRCC OG-100 Rating

- Collector Rating only
 - Glazed Flat Plate
 - Evacuated Tube
- Snapshot view of collector performance
- Plot Efficiency or Use Table
- Collectors must have OG-100 to receive tax credits

Kilowatt-hours Per Panel Per Day				Thousands of BTU Per Panel Per Day				
	CATEGORY (Ti-Ta)	CLEAR DAY	MILDLY CLOUDY	CLOUDY DAY	CATEGORY (Ti-Ta)	CLEAR DAY	MILDLY CLOUDY	CLOUDY DAY
А	(-5 °C)	13.5	10.2	6.9	A (-9°F)	46.2	34.9	23.7
в	(5 °C)	12.3	9.0	5.7	B (9°F)	42.0	30.8	19.5
С	(20 °C)	10.5	7.3	4.1	C (36 °F)	35.8	24.8	13.8
D	(50 °C)	7.2	4.2	1.3	D (90 °F)	24.5	14.2	4.6
Е	(80 °C)	4.3	1.6	0.0	E (144 °F)	14.6	5.6	0.0

A- Pool Heating (Warm Climate) B- Pool Heating (Cool Climate) C- Water Heating (Warm Climate) D- Water Heating (Cool Climate) E- Air Conditioning

Original Certification Date: 28-MAR-11

COLLECTOR SPECIFICATIONS

Frame:

SI Units:

IP Units:

Κτα = 1

Κτα = 1

Cover (Outer):

Cover (Inner):

Gross Area:	2.993 m ²	32.22 ft ²
Dry Weight:	46.3 kg	102. lb
Test Pressure:	1103. KPa	160. psig

-0.17 (S)

Linear Fit

Net Aperture Area: 2 78 m² 29 93 ft² Fluid Capacity: 2.6 liter 0.7 gal

COLLECTOR MATERIALS Pressure Drop Aluminum Flow ΔP Tempered glass ml/s gpm Pa in H₂O Tube - Copper / Absorber Material: Insulation Side: Foam Plate - Aluminum Absorber Coating: Selective coating Insulation Back: foam TECHNICAL INFORMATION Efficiency Equation [NOTE: Based on gross area and (P)=Ti-Ta] **Y INTERCEPT** SLOPE n= 0.749 -3.69060 (P)/I -0.00551 (P)²/ 0.752 -4.029 W/m²°C n= 0.749 -0.65010 (P)/I -0.00054 (P)²/ 0 752 -0.710 Btu/hr.ft².°F Incident Angle Modifier [(S)=1/cos0 - 1, 0°<0<=60°] Test Fluid: Wate -0.078 (S) $-0.086(S)^2$ Test Flow Rate: 27.7 ml/s.m² 0.0408 gpm/ft²

Which is More Efficient?

20°F Ambient, Reasonably Bright Day (250 Btuh/sq. ft), with 120°F fluid temp = Fluid Parameter 0.4

Evacuated Tubes

Heat Pipe and Direct Flow

Average R-Value per Inch of Various Materials

Which Collector to Use?

*Efficiency is not the only factor. Quality, Durability, Service and Cost must also be evaluated!

Space Heating vs. Domestic Water Heating

System Design

Absorber surface area (More collectors)

System efficiency SE

Project Siting

Azimuth angle
Solar South
Shading ______

Due South Best (Acceptable within 45°)

Inclination angle
 Annual ~ Latitude - 5°
 Winter ~ Latitude + 15°

Sales Process

Financial Info

- Federal Tax Credit
 - 30% of installed cost (no cap)
- State Tax Credit (MA)
 - Residential-15% (\$1000)
- State Rebate (MA)
 - \$25*SRCC Category C rating (\$3500)
- Utility Rebates
 - National Grid (Gas/Residential)- 15% of installed cost (cap of \$1500)
 - National Grid (Gas/Commercial)- Based on energy output (cap of \$100,000)
 - Other incentives are available....just go to <u>www.DSIREUSA.org</u>

<u> </u>

Data Input		
Number of Collectors	#	25
Area per Collector (sqft)	GOBI 410	800.00
Solar System Output	kWh	57,542
Backup Gas Heater Efficiency	%	75.0%
Type of energy being displaced	Gas	Therms
Energy cost	\$/unit	1.700
Annual Energy cost Increase	Gas	5.00%
Yearly Maintenance Cost	\$	25
Cost of Capital	%	0.0%
State Tax credit	%	0.0%
State/local rebates	5	9,000
Federal Tax Credit/Grant	%	30.0%
General Inflation	%	2.0%
Sales Tax	%	6.0%
Corporate Income Tax Rate	%	30.0%

Total system costs (including equipment and installation - sales tax op	tir	51,900
Sales Tax (input or calculate)	3,114	
Water heater replacement costs (if replaced anyway)	0	
Incremental solar costs		55,014
State/local Rebate	9,000	
Total Incremental Cost after state rebate		46,014
State Tax Credit	0	
Federal Tax Credit/Grant	16,504	
2011 100% Deduction	0	
Federal tax on State Rebate	2,700	
Total Cost after credits & rebate		32,210
2011 Bonus Depreciation (Basis minus 50% of Federal Credit)	46,762	
Total Cost after credits & rebate		37,762

Expanding Your Business

- Installing Solar
 - New revenue stream
 - Distinguish yourself
- Service Contract
 - Annually check solar system

And provide regular maintenance on HVAC system

Case Study- Laundromat

Laundromat

- 2000 gal/day
- Existing 3x 400 gallon tanks
- Auxiliary Gas-Fired Water Heater

Solar

- 25 Flat Plate Collectors
 - 800 Square Feet
- Solar Indirect Tank
- Solar Pump Station

Case Study- Solar Simulation

Results of Annual Simulation

Installed Collector Power: Installed Gross Solar Surface Area: Collector Surface Area Irradiation (Active Surface): Energy Produced by Collectors: Energy Produced by Collector Loop:	149.75 kBtu/hr 674.9 sq.ft 321.47 MMBTU 173.04 MMBTU 171.98 MMBTU	513.39 kBtu/sq.ft 276.34 kBtu/sq.ft 274.66 kBtu/sq.ft
DHW Heating Energy Supply: Solar Contribution to DHW: Energy from Auxiliary Heating:	423.85 MMBTU 172.15 MMBTU 265.31 MMBTU	
Natural Gas (H) Savings: Natural Gas (H) Savings: CO2 Emissions Avoided: DHW Solar Fraction: Fractional Energy Saving (EN 12976): System Efficiency:		7,813.9 m ³ 2,788.37 therm 36,428.34 lbs 39.4 % 39.0 % 53.6 %

Solar Energy Consumption as Percentage of Total Consumption

Daily Maximum Collector Temperature

Case Study-Feasibility

Year	Savings/Year	Acc. Savings	Depreciation	Acc. Cash
	(\$)	(\$)	(tax \$ effect)	Flow
0	0	0	0	-37,762
1	4,646	4,646	14,029	-19,088
2	4,878	9,524	0	-14,210
3	5,122	14,646	0	-9,088
4	5,378	20,024	0	-3,710
5	5,647	25,670	0	1,937
6	5,929	31,600	0	7,866
7	6,226	37,825	0	14,092
8	6,537	44,362	0	20,629
9	6,864	51,228	0	27,493
10	7,207	58,433	0	34,700
11	7,567	66,000	0	42,267
12	7,946	73,946	0	50,213
13	8,343	82,289	0	58,556
14	8,760	91,049	0	67,316
15	9,198	100,247	0	76,514
16	9,658	109,905	0	86,172
17	10,141	120,046	0	96,313
18	10,648	130,694	0	106,961
19	11,180	141,875	0	118,141
20	11,739	153,614	0	129,881
21	12,326	165,941	0	142,207
22	12,943	178,883	0	155,150
23	13,590	192,473	0	168,740
24	14,269	206,742	0	183,009
25	14 983	221 725	0	197 992

Financial Feasibility		
Net present value	\$	197,992
Return on investment	%	358%
Pavback	Years	5

Solar Thermal Rate =

2788 therm/yr * 25 yr

\$37,762

= \$0.54 per therm

Case Study-Residential

<u>Annual Savings with "Standard Equipment"</u> **Electric**: 4250 kWh (@ \$0.16/kWh) = **\$680.00 Oil**: 180 gal (@ \$3.00/gal) = **\$540.00 Natural Gas**: 250 therms (@ \$1.80/therm) = **\$450.00**

Results of Annual Simulation

Electricity Savings: CO2 Emissions Avoided: DHW Solar Fraction: Fractional Energy Saving (EN 12976): System Efficiency:		4,256.2 kWh 6,249.29 lbs 68.1 % 68.5 % 41.9 %
DHW Heating Energy Supply: Solar Contribution to DHW: Energy from Auxiliary Heating:	17 MMBTU 12.87 MMBTU 6.04 MMBTU	
Installed Collector Power: Installed Gross Solar Surface Area: Collector Surface Area Irradiation (Active Surface): Energy Produced by Collectors: Energy Produced by Collector Loop:	14.28 kBtu/hr 64.37 sq.ft 30.72 MMBTU 15.00 MMBTU 14.03 MMBTU	513.39 kBtu/sq.ft 250.65 kBtu/sq.ft 234.49 kBtu/sq.ft

Solar Energy Consumption as Percentage of Total Consumption

Daily Maximum Collector Temperature

Let's Examine A Live System in Operation...

Correctional Facility in NH

- Closed loop pressurized system (Ground mount)
- DHW Load: 7000 gal/day
 - Kitchen, Laundry, Showers
- 64 Collectors (2560 sq. ft)
- 2250 gallons of storage
- ~50% SF

Any Questions?

Contact: ross@te2engineering.com

